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Abstract. In this paper, we investigate the geometric phase of a composite system which is composed of
two spin- 1

2
particles driven by a time-varying magnetic field. Firstly, we consider the special case that only

one subsystem driven by time-varying magnetic field. Using the quantum jump approach, we calculate
the geometric phase associated with the adiabatic evolution of the system subjected to decoherence. The
results show that the lowest order corrections to the phase in the no-jump trajectory is only quadratic
in decoherence coefficient. Then, both subsystem driven by time-varying magnetic field is considered, we
show that the geometric phase is related to the exchange-interaction coefficient and polar angle of the
magnetic field.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 03.65.Yz Decoherence; open systems; quan-
tum statistical methods

QICS. 03.90.+m (Other) mathematical aspects of composite quantum systems – 02.40.+d Interaction
with environment and decoherence

1 Introduction

The concept of geometric phase was firstly discussed by
Pancharatnam [1] in his study of interference of classical
light in distinct states of polarization. Geometric phases
in quantum theory have attracted great interest since the
seminal work of Berry [2], in which he demonstrated that
a quantum-mechanical system which underwent an adia-
batic cyclic evolution acquired a geometrical phase factor
in addition to the dynamical one. Simon [3] gave a sim-
ple geometric interpretation of Berry phase in the lan-
guage of differential geometry and fibre bundles. After
that, this important notion has become an interesting sub-
ject and was a subject of interest in many different aspects,
which has led to many different generalizations and appli-
cations [4–9]. In reference [10] the authors showed that,
in a nonlinear Jaynes-Cummings model [11–14], how to
transmute the statistics of the system via the adiabatic
geometric phase. An important reason for the interest in
the concept of geometric phase is its relevance to geometric
quantum computation [15]. Indeed, it is believed that the
purely geometric characteristic of such phases potentially
provides robustness against certain sources of noise [16].

Geometric phases are useful in the present of quan-
tum computing as a tool to achieve fault tolerance [16,17].
However, practical implementations of computing are al-
ways done in the presence of decoherence. Thus, the
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geometric phase of the open system has attracted many
people’s interest, The first general approach is Uhlmanns
mathematical method which is based on a purification of
mixed states [18]. Gamliel and Freed [19] discussed geo-
metrical phase in the context of dissipative evolution of
an interacting spin system, governed by the stochastic
Liouville equation. Tong et al. [20] proposed a kinematic
approach to the mixed state geometric phase in nonuni-
tary evolution and demonstrated that the proposed ge-
ometric phase for nonunitarily evolving mixed states is
experimentally testable in interferometry. Nazri et al. [21]
considered the effects of certain forms of decoherence ap-
plied to geometric phase quantum gates and quantified the
loss of entanglement as a function of decoherence. Chiara
et al. [22] studied the behavior of geometric phase under
some typical error sources such as stochastic classical fluc-
tuations to the driving fields and demonstrated that the
geometrical aspects of Berry phase can reduce random
classical fluctuations, and Carollo and his coworker [23]
investigated the geometric phase of a spin- 1

2 particle in-
teracting with a driving quantized magnetic field which
is subjected to decoherence. In reference [24], it has been
shown that coupling to environment induces some geomet-
ric and non-geometric corrections to the geometric phase
of a spin-half system that is under an adiabatically slow
rotating magnetic field. we focus on the quantum trajec-
tory approach to the open system geometric phase. Bassi
and Ippoliti [25] analyzed geometric phase of open system
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and noted that the definition of geometric phase which
related to the type of stochastic unraveling of the master
equation may have difficulty. Sjöqvist [26] focused on the
quantum trajectory approach to the open system geomet-
ric phase and pointed out that the average over the phase
factors failed to reflect the geometry of the open system
evolution itself.

We are not aware of any studies in which two cou-
pling spin- 1

2 particles driven by an external classical mag-
netic field subjected to decoherence, so this is precisely
the aim of this paper. In this present paper, we investi-
gate the geometric phase of two coupled spin- 1

2 particles
driven by classical magnetic field, the results show that
the geometric phase of the composite system is related to
the exchange-interaction coefficient and the polar angle
of the magnetic field, then we calculate and analyze the
geometric phase associated with the evolution of the com-
posite subjected to decoherence through a quantum-jump
approach.

The remainder of this present paper is organized as
follows. In Section 2, we briefly review the scheme which
is used to study the geometric phase of the open system.
In Section 3. the theoretical model is described and the
eigenvalue, eigenvector and geometric phase of the system
are presented. Then, the influence of exchange-interaction
coefficient and the polar angle of the magnetic field on
geometric phase are analyzed and discussed. Next, some
numerical analysis are given. In Section 4, the lowest cor-
rections of the geometric phase for our system are given
when the decoherence effect are considered. Finally, we
conclude with a brief discussion and summary in Section 5.

2 Calculating of method

Let us consider a system described by the density
operator ρ and a Hamiltonian H . To investigate the
effects of decoherence on the geometric evolution of states
described by this system, we employ the quantum jump
approach, in the Markovian approximation, the master
equation reads (� = 1)

ρ̇ = £
1
i

[H, ρ]− 1
2

n∑

k=1

{
Γ †

kΓkρ+ ρΓ †
kΓk − 2ΓkρΓ

†
k

}
. (1)

The commutator generates, through the Hamiltonian H,
the coherent part of the evolution and the second part
represents the effect of the reservoir on dynamics of the
system. The action of each Γk amounts to a different de-
cohering process. Assume that the system has no decay,
the geometric phase for the “no-jump” trajectory for the
master equation (1) in the continuous limit is given by [5]

γ0 =
∫ T

0

〈
ψ0 (t)

∣∣H
∣∣ψ0 (t)

〉
〈
ψ0 (t)

∣∣ ψ0 (t)
〉 dt− arg

{〈
ψ0 (T )

∣∣ ψ0 (0)
〉}
,

(2)
where

i
d

dt

∣∣ψ0 (t)
〉

= H̃
∣∣ψ0 (t)

〉
,

∣∣ψ0 (0)
〉

= |ψ0〉 , (3)

and H̃ is a non-Hermitian effective Hamiltonian which is
given by

H̃ = H − i

2

n∑

k=1

Γ †
kΓk. (4)

3 Adiabatic geometric phase

Let us consider two spin- 1
2 particles are coupled by a uni-

axial exchange interaction in the z direction, which are
driven by a time-varying magnetic field B(t), with the
Hamiltonian (� = 1) [27]

Ĥ(t) = 4Jσ̂z
1 ⊗ σ̂z

2 + µB(t) · (σ̂1 + σ̂2), (5)

where σz
1 , σz

2 are Pauli matrices, and the indices
1 and 2 indicate the corresponding subsystems. The
presence of a time-dependent external magnetic field
is considered to be B0n(t) with the unit vector
n(t) = (sin θ cosφ, sin θ sinφ, cos θ). The first part of the
Hamiltonian describes the exchange interaction (spin-
spin coupling) with exchange-interaction coefficient J (as-
sumed positive without loss of generality). µ is the gy-
romagnetic ratio assumed to be equal for the two spins
and σε = (σx

ε , σ
y
ε , σ

z
ε) is the εth spin operator (ε = 1, 2)

composed of the Pauli matrices.
It is note that the eigenstates of the system are entan-

gled, so it is difficult to analytically solve this Schrödinger
equation. Thus, we firstly consider the simple case that
only one subsystem driven by the magnetic filed, and
analytically solve Schrödinger equation and obtain the
geometric phase. Then, we introduce numerical calculus
method to the case that both subsystem driven by the
magnetic filed, and analyze and discuss the properties of
geometric phase of the composite system.

If we assume that only one subsystem driven by the
magnetic field, the Hamiltonian can be reduced to

Ĥ(t) = 4Jσ̂z
1 ⊗ σ̂z

2 + µB(t) · σ̂1. (6)

The eigenvalues Ei of this Hamiltonian can be found
simply as follows

E1,2 = ∓
√
η2 − 2η cos(θ) + 1, (7)

E3,4 = ∓
√
η2 + 2η cos(θ) + 1, (8)

and the corresponding instantaneous eigenvectors
(| Ψi (t)〉) of this Hamiltonian

|Ψ1,2〉 =
1√
M1,2

[(cos(θ) − η + E1,2)e−iφ|e, g〉

+ sin(θ)|g, g〉], (9)

|Ψ3,4〉 =
1√
M3,4

[(cos(θ) + η + E3,4)e−iφ|e, e〉

+ sin(θ)|g, e〉], (10)

with

M1,2 = |[cos(θ) − η + E1,2]e−iφ|2 + sin2(θ), (11)

M3,4 = |[cos(θ) + η + E3,4]e−iφ|2 + sin2(θ). (12)
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Fig. 1. (Color online) Geometric phase as a function of η with
a fixed θ (θ = 14π/30).

where η is related to exchange-interaction coefficient J
(η = 4J

µB0
). Assuming the system undergoes adiabatic and

cyclic evolution starting with an initial state |Ψj(t)〉 (j =
1, 2, 3, 4), keeping θ as a constant and changing φ slowly
from 0 to 2π (φ(T ) = 2π), the Berry phase generated is
calculated as follows:

γj = i

∫ T

0

dt〈Ψj(t)| d
dt

|Ψj(t)〉. (13)

Substituting equations (9) and (10) into equation (13), the
explicit expressions of equation (13) are

γ1,2 = 2π
[cos(θ) − η + E1,2]

2

[cos(θ) − η + E1,2]
2 + sin2(θ)

, (14)

γ3,4 = 2π
[cos(θ) + η + E3,4]

2

[cos(θ) + η + E3,4]
2 + sin2(θ)

. (15)

In the special case where the exchange interaction con-
stant J = 0, the eigenvalues of the system are reduced into
E± = ±1 (in units of µB0

4 ), with the corresponding instan-
taneous eigenstates Ψ+(t) = [cos( θ

2 )e−iφ|e〉 + sin( θ
2 )|g〉] ⊗

|g〉 and Ψ−(t) = [− sin( θ
2 )e−iφ|e〉 + cos( θ

2 )|g〉] ⊗ |g〉 and
the geometric phases of the system reduce to the well-
known results γ+ = (1 + cos(θ))π and γ− = (1− cos(θ))π.
This results can be easily accepted. There are no inter-
actions between the subsystem 1 and subsystem 2 when
J = 0. In other words, the subsystem 1 can freely evolve
and it should make no effects on any behaviors of subsys-
tem 2 when the composite system is prepared in a sep-
arable state. So the results should reduce to one subsys-
tem case when the other subsystem acquires no geometric
phase. Some elegant paper [28] have demonstrated similar
results for geometric phase.

Now we give a simple analysis for the influence of
exchange-interaction coefficient η (in units of µB0

4 ) on
the geometric phase. In Figure 1, we plot the geometric
phase as a function of exchange-interaction coefficient η
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Fig. 2. (Color online) Geometric phase as a function of polar
angle of magnetic filed θ with a fixed η (η = 0.1).
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Fig. 3. (Color online) Geometric phase γ3 as a function of η
with different polar angle θ of magnetic field.

with a fixed θ (θ = 14π/30). It is easily seen from Fig-
ure 1 that the geometric phases tend to zero (or 2π) when
the exchange-interaction coefficient increase continuously
(η → ∞). Figure 2 shows the geometric phase dependence
on the polar angle of magnetic field θ, when we have a
fixed exchange-interaction coefficient η (η = 0.1). As can
be seen, the geometric phases also tend to zero (or 2π)
when θ increase from 0 to π. In order to further explore
the influence of exchange-interaction coefficient η on the
geometric phase, we give the corresponding curves in Fig-
ures 3 and 4. The specific results are as follows. We present
geometric phase γ3 as a function of exchange-interaction
coefficient η with different θ in Figure 3. From Figure 3,
we find that the geometric phase γ3 tends to zero with
increasing η and geometric phase γ3 more quickly reduce
to zero when θ continuously decrease. We also plot in Fig-
ure 4 geometric phase as a function of θ with different
fixed η. It is interesting to compare the change tendency
of the geometric phase between η = 0 and η �= 0 (η = 0.1
or η = 0.3). Figure 4 clearly shows that geometric phase
more slowly tends to zero when η = 0 than when η �= 0.
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Fig. 4. (Color online) Geometric phase γ4 as a function of
polar angle of magnetic filed θ with different fixed η.

Then, we calculate the Geometric phase of Hamilto-
nian (5) by using numerical calculus method. In a space
spanned by Φ1, Φ2, Φ3, Φ4 (Φ1 = |g〉|g〉; Φ2 =

√
2

2 (|g〉|e〉+
|e〉|g〉); Φ3 = |e〉|e〉; Φ4 =

√
2

2 (|g〉|e〉 − |e〉|g〉)) where |g〉
and |e〉 stand for spin down and spin up, respectively.
The Hamiltonian (5) can be expressed in the block-matrix
form [7]

H =

⎛

⎝
Hc(t) 0

0 −η

⎞

⎠ ,

with

Hc =

⎛

⎜⎜⎜⎜⎝

η − cos(θ)
√

2
2 sin(θ)eiφ 0

√
2

2 sin(θ)e−iφ −η
√

2
2 sin(θ)eiφ

0
√

2
2 sin(θ)e−iφ η + cos(θ)

⎞

⎟⎟⎟⎟⎠
.

The instantaneous eigenvectors (|ψj(t)〉) (j = 1, 2, 3) of
this Hamiltonian

|ψj〉 =
Aj√
Mj

e2iφ|Φ1〉 +
Bj√
Mj

eiφ|Φ2〉 +
Cj√
Mj

|Φ3〉 (16)

with

Aj = − sin2(θ) + 2(−η − Ej)(η + cos(θ) − Ej) (17)

Bj = −
√

2 sin(θ)(η + cos(θ) − Ej) (18)

Cj = sin2(θ) (19)

and

Mj = 2 sin4(θ) + 2(η + cos(θ) − Ej)

× [sin2(θ)(3η+Ej +cos(θ))+2(η+Ej)2(η+cos(θ)−Ej)]
(20)

where Ej are the solution of the equation (21)

E3
j − ηE2

j − (η2 + 1)Ej + η + η3 − 2η cos2(θ) = 0. (21)
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Fig. 5. Geometric phase Γ as a function of η with a fixed angle
θ = π/3 of magnetic field.
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Fig. 6. Geometric phase Γ1 as a function of η with different
polar angle θ of magnetic field.

Using equation (16) and (13), the Geometric phase of the
composite system can be obtained

Γj = 2π
−2A2

j −B2
j

Mj
(22)

we can analyze the properties of the geometric phase by
using the numerical calculus method. In Figure 5, we plot
the geometric phase as a function of η with a fixed θ
(θ = π/3). From Figure 5, we find that that the geometric
phases tend to zero (or 2π) when η increase continuously
(η → ∞),this is similar to the case that only one subsys-
tem driven by the magnetic field. We also plot in Figure 6
geometric phase Γ1 as a function of η with different fixed
θ, From Figure 6, we find that the geometric phase Γ1

more slowly reduce to zero when θ increase.

4 Geometric phase in the decoherence system

In this section, using the quantum jump approach, we
obtain the correction to geometric phase due to the de-
coherence when the system evolve in the adiabatic way.
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Let us consider the simplest case of decoherence: our sys-
tem evolving under the Hamiltonian (6) and subjected to
spontaneous decay, which can be described by the mas-
ter equation (1) with Γ =

√
λσ1−, where λ is the sponta-

neous decay coefficient. Thus, the effective non-Hermitian
Hamiltonian in the no-jump case is H̃ = H − iλ

2σ
z
1 . Using

equations (2) and (3), we obtain the geometric phase for
a no-jump evolution

γ1,2 = 2π

{
1 − Re

[
sin2(θ)

(
C1,2 − iλ

2

)2
+ sin2(θ)

]}
,

γ3,4 = 2π

{
1 − Re

[
sin2(θ)

(
C3,4 − iλ

2

)2
+ sin2(θ)

]}
, (23)

with

C1,2 = cos(θ) − η ∓
√
η2 − 2η cos(θ) + iηλ+ 1,

C3,4 = cos(θ) + η ∓
√
η2 + 2η cos(θ) − iηλ+ 1. (24)

We can also adopt the biorthogonal basis technique [31] to
obtain these results corresponding to the real part of the
complex geometric phase. Under the adiabatic approxi-
mation, in order to consider the influence of decoherence
on the geometric phase, we can expand the equation (23)
with respect to λ, then retaining the terms up to the sec-
ond order in λ the geometric phases read

γd
1,2 	 γ1,2 + 2π

λ2

B2
1,2

sin2(θ)

{
[cos(θ) + E1,2]

2

B1,2
− 1

4

}
,

γd
3,4 	 γ3,4+2π

λ2

B2
3,4

sin2(θ)

{
[cos(θ)+E3,4 − 2η]2

B3,4
− 1

4

}
,

(25)

with

B1,2 = [cos(θ) − η + E1,2]
2 + sin2(θ),

B3,4 = [cos(θ) + η + E3,4]
2 + sin2(θ). (26)

It is worth pointing out that equation (25) returns to equa-
tion (23) when we only consider the terms of the first order
in λ. In other word, in the case of low decoherence, equa-
tion (25) reveals that the resulting error is of order λ2/B2

k
(k = 1−4) and thus can be made negligible by making
Bk large enough. The results clearly show that the lowest
correction due to the decoherence for the “no-jump” tra-
jectory is only of second order in the decaying coefficient λ.
This reflects the resilience of the geometric phase against
the environment, in other words, the decoherence resource
can cause this system to jump from the one instantaneous
eigenstates into the other instantaneous eigenstates, but
this process is restricted by the adiabatic approximation.
For more general condition, the state of a system may
stay at the instantaneous eigenstates of the instantaneous
Hamiltonian under the adiabatic limit, we can say that
this property opposes the tendency of the environment of
dragging the state away from its undisturbed evolution.

Sjöqvist [26] has defined a meaningful geometric phase
for an open system and proposed an experiment scheme
to implement the geometric phase for an individual trajec-
tory. This idea may be useful in understanding our results
or designing a corresponding experiment. we noted that
Yi [29] has deal with the quantum jump approach to an
open bipartite system, which could be helpful in under-
standing our paper.

5 Conclusions

In conclusion, We use the numerical calculus method to in-
vestigate the geometric phase of a composite system which
is composed of two spin- 1

2 particles driven by a classical
magnetic field. The results clearly show that the geometric
phase dependence on the exchange-interaction coefficient
η and polar angle θ of magnetic field and the geomet-
ric phase tend to zero (or 2π) when η continuously in-
crease (η → ∞) or θ slowly increase from 0 to π. We also
consider the special case that only one subsystem driven
by time-varying magnetic field. Using quantum jump ap-
proach, the influence of simple decoherence on the geomet-
ric phase was considered. It is interesting that the lowest
correction of the geometric phase due to decoherence is
only quadratic in the decoherence coefficient λ. This re-
sults reinforce the idea that geometric phases can be ro-
bust to errors, in agreement with the previous works which
analyze the geometric phase under quantum or classical
noise [22,23,30]. Obviously, the applications of geomet-
ric phases have been studied in lots of references [16,31],
and the corresponding experiment has been proposed by
Carollo [32]. We are therefore hopeful that the theoretical
ideas presented here may stimulate corresponding experi-
mental activity.
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Foundation of China under Grant Nos. 10575040 and 90503010,
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